EXECUTIVE SUMMARY & CONCLUSION

1.1 INTRODUCTION

M/s Maggo Chemical and pharmaceutical Unit -2 is a green field technical grade pesticide manufacturing project. It is scheduled under S.No. – 5 (b), Category 'A' as per EIA notification, 2006 and amendments there after. The organization of M/S Maggo Chemical and pharmaceutical Unit -2 has proposed to setup a greenfield "Technical grade Pesticide Manufacturing Plant" at Khasra no. No10//21(4-0),10//22(4-0),10/23(3-10),25//2(4-0),25//3/1 (2-18),25//3/2 (0-16),25//1(4-0),26//4/2 (1-9)26//5(4-0) Village Behra (Gulabgarh Behra Road), Tehsil- Derabassi, District- S.A.S. Nagar (Mohali), Punjab – 140507. The total cost of project will be around 898.22 lakhs.

The application for the scoping of the said project was submitted to the Expert Appraisal Committee (EAC) Industry 3, MoEF&CC, New Delhi on dated 12th March 2024 and the standard ToR was granted to the project vide F.No IA-J-11011/105/2024-IA-II(I) on 10th, April 2024.

TABLE 1.1: LOCATION AND BRIEF DRSCRIPTION OF PROJECT S.No. Parameter Description **Name of Project** Proposed for manufacturing of technical grade 1 pesticides by M/s Maggo Chemical and

1.2 LOCATION OF PROIECT

				pharmaceutical Unit -2			
2	Total	Plot Area	a	24159.73 SQ.M. (5.97 Acre)			
3	Projec	ct Cost		8.9822 Crores (898.22 Lakhs)			
4	4 Latitude & Longitude of project site 3			30º34'7.89" N and 76º53'7	′.97" E		
5	Topos	heet No.		H43K14 & H43K15			
6	Khasr	a No.		10//21(4-0),10//22(4-0),	10/23(3-10), 25//2(4	4-	
				0),25//3/1(2-18),25//3/2	2 (0-16),25//1(4-		
				0),26//4/2 (1-9).26//5(4-	-0)		
7	Villag	e, Tehsil	, District, State	<u>Village-</u> Behra (Gulabgarh	Behra Road), Tehsil	- Dera	
				Bassi, District - S.A.S. Naga	r (Mohali), Punjab –		
				140507.			
8	Propo	sed Proc	luction Capacity				
				1011MT/Annum			
		S. No Product name		Product Capacity	CAS No.		
			HERE	BICIDE (MT/Annum)	-		
		1	Bispyribac-Sodium	33.00	125401-92-5		
		2	Metribuzin	55.00	21087-64-9		
		3	Clodinafop Propargyl	30.00	105512-06-9		
			INSECT	FICIDES (MT/Annum)	-		
		4	Diafenthiuron	165.00	80060-09-9		
		5	Fenpyroximate	110.00	111812-58-9		
		6	Imidacloprid	33.00	138261-41-3		
		7	Thiamethoxam	44.00	153719-23-4		
		8	Cypermethrin	15.00	52315-07-8		
		9	Lambda - Cyhalothrin	88.00	91465-08-6		
	10 Chlorpyriphos		Chlorpyriphos	55.00	2921-88-2		
	11 Cartap Hydrochloride		Cartap Hydrochloride	55.00 15263-52-2			
		FUNG		ICIDE (MT/Annum)			
	12 Hexaconazole		Hexaconazole	110.00	79983-71-4		
		13 Tebuconazole		110.00	107534-96-3		
		14	Azoxystrobin	42.00	131860-33-8		
		15	Metalaxyl	66.00	57837-19-1		
		Total		1011	MTPA		

9	Manpower	During Construction Phase -
		Permanent -50nos.
		During Operation Phase-
		Permanent-40nos.
10	Total Water Requirement	75.14KLD
	Fresh Water	59.52KLD
	Recycle water	15.62KLD
	Source	Bore-Well. Permission will be obtained from Punjab
		Water Regulation and Development Authority
		(PWRDA)
11	Total Wastewater Generation	19.58KLD
	Industrial W/W	15.08KLD
	Domestic W/W	4.50KLD
12	Power Load Require	1600KVA
	Electricity source	Punjab state power supply ltd.
	D.G. set	Quantity – 3 i.e 2 x 500KVA & 1x 125 KVA
13	Boiler	6.00TPH
14	Fuel	1. Risk Husk Briquette for Boiler: 14 MT/Day
		2.HSD for D.G Set: 150 Liters/Day
15	Nearest Town, City, District	Dera Bassi -4. 12 K.M, WNW
	Headquarters along with distance	
	in Km.	
State	boundary of Punjab and Haryana 2.2 I	K.M away from project site.

1.3 MONTHLY PRODUCTION AND EQUIPMENT DETAILS TABLE 1.2: MONTHLY PRODUCTION CAPACITIES

S.			No of	Production	Capacity
No.	Product	Туре	Working Day	(MT/Month)	(MT/Annum)
	Bispyribac-Sodium				
1	Metribuzin	Horbicido	100	20 50	110
	Clodinafop	Herbicide	100	29.30	110
	Propargyl				
	Hexaconazole				
2	Tebuconazole	Europiaida	100	92.00	328
	Azoxystrobin	Fuligicide		02.00	
	Metalaxyl				
	Diafenthiuron				
	Fenpyroximate			141.25	
	Imidcloprid				
	Thiamethoxam				
	Cypermethrin	Incocticido	100		565
3	Lambda -	Insecticite	100		202
	Cyhalothrin				
	Chlorpyriphos				
	Cartap				
	Hydrochloride				

	IIIDEE NO	THE HET OF THE			
Sr No	List of Equipment / Machine's	Capacity	Qty	Load (KW / HP)	Usage
1	MSGL Reactor	3000 Ltr.	1	7.5 HP	Reaction cum Distiliation vessel
2	MSGL Reactor	5000 Ltr.	1	10 HP	Reaction cum Distiliation vessel
3	MSGL Reactor	6300 Ltr.	2	15 HP	Reaction cum Distiliation vessel
4	MSGL Reactor	10000 Ltr.	1	20 HP	Reaction cum Distiliation vessel
5	MSGL Reactor	500 Ltr.	2	3 HP	Reaction cum Distiliation vessel
6	SS316 Reactor	500 Ltr.	2	3 HP	Reaction cum Distiliation vessel
7	SS316 Reactor	5000 Ltr.	3	7.5 HP	Reaction cum Distiliation vessel
8	SS316 Reactor	8000 Ltr.	4	15 HP	Reaction cum Distiliation vessel
9	SS316 Reactor	10000 Ltr.	2	20 HP	Reaction cum Distiliation vessel
10	ANFD	6 KL	1	15 HP	For Drying
11	Distiliation Assembly	7000 Ltr.	4 set	40 HP	Distiliation
12	Nutch Filter	8000 Ltr.	3	7.5 HP	Filter
13	Compressor	5 HP	1	5 HP	For Air Supply
14	Vaccum pump/ Ejector System	15 HP	4	15 HP	Vaccum Creation
15	SS Vessel	1000 Liter	2	3 HP	For Settling
16	Condensers / Heat Exchanger	MSGL/Graphite /SS/MS	20	-	Cooling
17	SS Tank	20 KL / 25 KL	4	5 HP	Storage
18	SS Tank	10 KL / 15 KL	3	5 HP	Storage
19	MS Tank	20 KL / 25 KL	4	5 HP	Storage
20	MS Tank	10 KL / 15 KL	4	5 HP	Storage
21	MS Tank	40 KL	4	5 HP	Storage
22	Fire Fighting Equipment	Complete system	1	40 HP	For Fire Control System

TABLE NO. 1.3: LIST OF PROPOSED PLANT EQUIPMENT AND MACHINES.

TABLE: 1.4 RAW MATERIAL CONSUMPTION

Sr. No	Name of raw material	MTPA	CAS NO	Physical State	Source	Type of storage	Max. Storage Cap. MT/M
			Na	me of Produ	ct: Azoxystr	obin-42.00N	ИТРА
1	Toluene	105.00	108-88-3	Liquid	Domestic	Tank	8.75
2	МНРМА	23.10	680-31-9	Liquid	Domestic	Drum	1.925
3	Potassium hydroxide 85%	7.35	1310-58-3	Solid	Domestic	PVC Bag	0.6125
4	4,6-Dichloropyrimidine	16.80	1193-21-1	Solid	Domestic	PVC Bag	1.4
5	2-Hydroxybenzonitrile	13.02	611-20-1	Solid	Domestic	PVC Bag	1.085
6	Sodium hydroxide	4.20	1310-73-2	Crystalline solid	Domestic	PVC Bag	0.35
			Name	of Product:	Bispyribac	sodium- 33.	DOMTPA
7	Ethyl acetate	41.25	141-78-6	Liquid	Domestic	Tank	3.4375
8	2,6-DHBA	12.38	303-07-1	Liquid	Domestic	Drum	1.0313
9	Dimethyl sulfate	10.73	77-78-1	Liquid	Domestic	Drum	0.8938

10	Sodium bicarbonate	7.43	144-55-8	Crystalline	Domestic	PVC Bag	0.6188
11	4.6-DMMSP	34.65		powder	Domestic		2.8875
12	Potassium carbonate	23.10	584-08-7	Wet Solid	Domestic	PVC hag	1.925
13	Isopropanol	66.00	67-63-0	Liquid	Domestic	Tank	5.5
14	Sodium hydroxide	3 30	1310-73-2	Crystalline	Domestic	PVC Bag	0.275
11	bouldin ny aroniae	0.00	1010 / 0 2	solid	Domestie	I VO Dug	0.275
			Name o	of Product: C	artap hydro	chloride-55	5.00MTPA
15	2-Dimethylamino-1,3-	46.75	29559-55-5	Liquid	Domestic	Tank	3.8958
16	dichloropropane Sodium thiosulfate	8.36	7772-98-7	Solid	Domestic	PVC Bag	0.6967
17	Sodium cvanide	5.39	143-33-9	crystalline	Domestic	PVC Bag	0.4492
17	ooululli oyulluo	010 9	110 00 9	solid	Doniebtie	I VO DUB	011172
18	Cartap solution	173.25	15263-53-3	Liquid	Domestic	Tank	14.438
19	Hydrochloric acid	10.45	7647-01-0	Liquid	Domestic	Tank	0.8708
		•	Nai	ne of Produc	t: Chlorpyr	iphos-55.00	МТРА
20	NaTCP	41.965	Hydrochloric	Solid	Domestic		3.4971
			acid				
21	DETC	35.75	2524-04-01	Liquid	Domestic	Tank	2.9792
22	Catalyst	0.495		Solid	Domestic	PVC Bag	0.0413
23	EDC	176	25952-53-8	Liquid	Domestic	Tank	14.667
24	Caustic lye 48%	2.75	1310-73-2	Liquid	Domestic	Drum	0.2292
			Name	of Product: C	lodinafop p	ropargyl-30	D.00MTPA
25	Toluene	60.00	108-88-3	Liquid	Domestic	Tank	5.00
26	RHPPA	16.50		Liquid	Domestic	Tank	1.375
27	5-Chloro-2,3-DFP	13.50	41270-66-0	Liquid	Domestic	Tank	1.125
28	Sodium hydroxide	7.50	1310-73-2	Crystall	Domestic	PVC Bag	0.625
29	Propargyl chloride	5.25	624-65-7	Liquid	Domestic	Tank	0.4375
30	PTSA	0.30	6192-52-5	Solid	Domestic	PVC Bag	0.025
			Nai	me of Produc	:t: Cyperme	thrin-15.00	MTPA
31	Meta phenoxy benzaldehyde	7.275	39515-51-0	Liquid	Domestic	Drum	0.6063
32	Hexane	7.695	110-54-3	Liquid	Domestic	Drum	0.6413
33	СМАС	8.43	52314-67-7	Liquid	Domestic	Drum	0.7025
34	Catalyst	0.225		Solid	Domestic	PVC Bag	0.0188
35	Hexane	23.10	110-54-3	Liquid	Domestic	Tank	1.925
36	Soda ash	0.225	497-19-8	Solid	Domestic	PVC Bag	0.0188
37	Sodium cyanide	2.10	143-33-9	crystalline	Domestic	PVC Bag	0.175
38	Sodium hypochlorite	0.60	7681-52-9	Liquid	Domestic	Drum	0.05
39	Acetic acid	0.045	64-19-7	Liquid	Domestic	Drum	0.0038
			Nan	ne of Product	t: Diafenthi	uron-165.00)MTPA
40	Xvlene	412.50	1330-20-7	Liquid	Domestic	Tank	34.375
41	2.6-DIPPTU	148.50	24544-04-5	Crystal	Domestic	PVC Bag	12.375
42	Isopropanol	330.00	67-63-0	Liquid	Domestic	Tank	27.5
43	Tert-Butvlamine	33.00	75-64-9	Liquid	Domestic	Tank	2.75
			Nam	e of Product	: Fennvrovi	mate-110.0	OMTPA
44	Dichloroethane	330	107-06-2	Liquid	Domestic	Tank	27.5
45	1,3-DMPPCO	64.9		Liquid	Domestic	Drum	5.4083
	·		1	-1		J	

46	ТВСМВ	63.86	216-699-2	Liquid	Domestic	Drum	5.3167
47	Potassium carbonate	19.8	584-08-7	Wet solid	Domestic	PVC Bag	1.65
			Nan	ne of Produc	t: Hexacona	zole-110.00	MTPA
48	Toluene	165	108-88-3	Solid	Domestic	PVC Bag	13.75
49	2,4-DCPP	85.8	120-83-2	Solid	Domestic	PVC Bag	7.15
50	Dimethyl sulfide	23.1	75-18-3	liquid	Domestic	Tank	1.925
51	Sodium hydroxide	29.15	1310-73-2	Crystalline Solid	Domestic	PVC Bag	2.4292
52	1,2,4-Triazole	24.75	288-88-0	Powder Solid	Domestic	PVC Bag	2.0625
		I	Na	me of Produ	ct: Imidaclo	prid-33.00N	МТРА
53	ССМР	29.7		Powder solid	Domestic	PVC Bags	2.475
54	N-NII	24.816		Gas	Domestic	Cylinder	2.068
55	DMF	72.6	68-12-2	Liquid	Domestic	Tank	6.05
56	Catalyst	0.33		Solid	Domestic	PVC Bag	0.0275
57	Na ₂ CO ₃	23.298	497-19-8	Crystalline solid	Domestic	PVC Bag	1.9415
58	Crude Imidacloprid	48.51	138261-41-3	Semi solid	Domestic	PVC Bag	4.0425
59	Methanol	13.2	67-56-1	Liquid	Domestic	Tank	1.10
60	Caustic lye	1.65	1310-73-2	Crystalline solid	Domestic		0.1375
			Name	of Product: L	ambda cyh	alothrin-88	.00MTPA
61	Lambda cyhalothrin acid	51.04	72748-35-7	Solid	Domestic		4.2533
62	DMF	0.44	68-12-2	Liquid	Domestic	Drum	0.0367
63	Thionyl chloride	25.52	7719-09-7	Liquid	Domestic	Tank	2.1267
64	n-Hexane	176	110-54-3	Liquid	Domestic	Tank	14.667
65	Sodium cyanide	10.12	143-33-9	Crystalline Solid	Domestic	PVC Bag	0.8433
66	3- Phenoxybenzaldehyde	39.60	39515-51-0	Liquid	Domestic	Tank	3.3
67	Isopropyl alcohol	176	67-63-0	Liquid	Domestic	Tank	14.667
68	Diisopropylamine	4.4	108-18-9	Liquid	Domestic	Drum	0.3667
		L	Ν	ame of Prod	uct: Metala	xyl- 66.00M	ГРА
69	n-Hexane	165	110-54-3	Liquid	Domestic	Tank	13.75
70	2,6-Dimethylaniline	29.7	87-62-7	Liquid	Domestic	Tank	2.475
71	Sodium carbonate	26.4	497-19-8	Crystalline	Domestic	PVC Bag	2.2
72	Methyl-2-	30.36	17639-93-9	Liquid	Domestic	Tank	2.53
73	2-Methoxyacetyl	26.40	38870-89-2	Liquid	Domestic	Tank	2.20
	cinoriae	I	I N	ame of Produ	ıct: Metribu	izin- 55.00M	ТРА
74	4-Amino-6-tert-butyl- 3-mercapto-1,2,4- triazin-5(4H)-one (ATMT)	55.00		Liquid	Domestic	Drum	4.5833
75	Dimethyl sulphate	35.86	77-78-1	Liquid	Domestic	Tank	2.9883
76	Sulphuric acid	70.07	7664-93-9	Liquid	Domestic	Tank	5.8392

77	Soda ash	88.00	497-19-8	Solid	Domestic	PVC Bag	7.3333
78	Caustic soda flakes	1.65	1310-73-2	Crystalline	Domestic	PVC Bag	0.1375
				Solid			
			Nan	ne of Produc	t: Tebucona	zole-110.00	MTPA
79	Dichloroethane	275	107-06-2	Liquid	Domestic	Tank	22.917
80	CPDMP	85.25	87413-09-0	Liquid	Domestic	Drum	7.1042
81	Dimethyl sulfide	23.65	75-18-3	Liquid	Domestic	Tank	1.9708
82	Sodium hydroxide	30.25	1310-73-2	Crystalline	Domestic	PVC Bag	2.5208
				Solid			
83	1,2,4-Triazole	25.3	288-88-0	Solid	Domestic	PVC Bag	2.1083
			Nan	ne of Product	t: Thiameth	oxam- 44.00	MTPA
84	DMF	110.00	68-12-2	Liquid	Domestic	Tank	9.1667
85	ССМТ	26.4		Liquid	Domestic	Drum	2.20
86	MNIO	25.3		Liquid	Domestic	Drum	2.1083
87	Potassium carbonate	11.00	584-08-7	Wet solid	Domestic	PVC Bag	0.9167

TABLE NO. 1.5 : DETAILS OF UTILITIES SERVICES

C N	Type of	Dropogod Otry		Load		x
Sr. No	Utilities	Proposed	Qty	(KW/HP)	Usage	Location
1	Boiler	6.00 TPH	1	75 HP	Steam Generation	Utility Block
2	DG Sets	500 KVA	1	-	Electricity Generation	Utility Block
3	DG Sets	125 KVA	1	-	Electricity Generation	Utility Block
4	Cooling Tower	2 X 1000 TR	2	100 HP	Process Water Cooling	Utility Block
5	Brine Plant	2 X 60 TR - 10 Deg. C	Deg. C 1 100 HP Refrigeration		Utility Block	
6	Nitrogen Plant	60 M ³ per Hr	1	-	Nitrogen Blanking	Utility Block
7	Air Compressor	125 CFM	1	60 HP	Air Supply	Utility Block
8	Transformer	1600 KVA	1	-	Electricity	Utility Block
9	RO Plant	15 KLD	1	1 HP	W/W Treatment Plant	Utility Block
10	STP	5 KLD	1	25 HP	W/W Treatment Plant	ETP Block
11	ETP	20 KLD	1	45 HP	W/W Treatment	ETP Block
12	Incinerators	200kg/day	1	20 HP	HW Incineration	ETP Block
13	MEE	15 KLD	1	45 HP	Water Evaporation	ETP Block

1.4 INVESTMENT OF THE PROJECT

The overall investment in the project is assumed to be 8.9822 Crore. About Rs. 2.10 Crore are proposed for the environment protection program. This cost will be spending in phase wise along with the growth of project.

Table no. 1.6 EnvironmentManagementBudget						
	Environment		Capital Cost	Recurring cost of		
SN	Lague	Component	of EMP	EMP/ ANNUM		
	issue	_	(Lakhs)	(Lakhs)		
		Cost Stack Installation				
		Cost of Cooling and Chilling units				
	Air /Noico	Cost of Venturi Scrubber,				
1	All'/NOISe Dollution Control	Cost of Multi Cyclone at Boiler	50	1.5		
	Fonution Control	Cost of Acoustic enclosure at DG Set				
		Cost of online continuous emission				
		monitoring system				
		Cost of ETP, STP, MEE, RO				
2	Water Pollution	Installation	100			
Z	Control	Cost of Flow meter at Inlet/outlet of	100	4		
		Effluent at ETP				
		Cost of purchase of the sapling				
		Cost of Tree planting				
		Cost of watering				
3	Green Belt	Cost of maintenance	5	1		
		Cost of Manuring				
		Misc. Cost (lawn/garden and other				
		form of greenery				
		Cost of PPE, Oxygen Cylinder,				
		Stretcher & Antidote etc.				
		Imparting safety training to				
4	Occupational	employees every 6 months	2 5	1 5		
4	Health	Medical examination of employees	2.5	1.5		
		(Permanent Doctor & Paramedical				
		Staff)				
		Cost of firefighting Extinguishers				
		Cost Construction of Hazardous				
5	Hazardous Wasto	waste Storage yard	50	1		
5	nazaruous waste	Cost of TSDF Membership	50	L		
		Cost of Incinerator Installation				
6	Environmental	Cost of RDS				
	Monitoring	Cost of Stack Monitoring kit				
		Cost of Dragen pump & tube	2.5	1		
		Misc. Cost (Sensor, apparatus,				
		Equipment				
		Total	210	10		

ACTIVITIES IN PROVISION OF CER								
S.	Particulars	Proposed Budget in						
Ν		Lacs						
1	Installation of RO Plant in Govt. Sr. Secondary School, Derabassi	1						
2	Solar Panel 10 KW donate to Sarvhitkari Vidya mandir school, Derabassi.	1						
3	Surface runoff rainwater harvesting in Nearest village Pond (desilting of pond to recharge the rainwater, waste water of the village shall be diverted in one corner & improving beautification of surrounding pond area by providing green wire mesh fencing and	5						

	flowering plantation around the pond	
4	Plantation on roads in industrial area with tree guards and maintenance	1
	Total	8

1.5 DESCRIPTION OF ENVIRONMENT

The environmental monitoring for Ambient air quality, water quality, soil quality, noise levels, meteorology and traffic survey of the study area extending 10km beyond the site boundary was carried out by Environmental and Chemical Laboratory (Wolkem India Limited), E-101-102, Mewar Industrial Area, Madri, Udaipur, Rajasthan, India.

To predict the impact of the proposed activities on the surrounding environment, the current baseline environmental status was studied by collecting the data and carrying out monitoring for the period of October 2023 to December 2023. The environmental monitoring data has been analysed with respect to ambient air quality, water quality, noise levels, soil characteristics, flora & fauna and parameters concerning human interest. On the basis of monitoring data, the relevant impacts on various environmental components were also predicted by using appropriate mathematical models as well as impact assessment techniques. An appropriate environmental management plan was also delineated to minimize the adverse impacts.

A. AIR ENVIRONMENT

The monitoring has been carried out at a frequency of two samples per week at each of eight locations, adopting a continuous 24-hour schedule for the period of 1st October 2023 to 31st December 2023.

S No		From the plant area		Coordinate		
5. NO.	rion die p		laiit ai ea	CUU	luinate	
	Station	Distance in	Direction	Longitude	Latitude	
		KM				
A1	Project Site	0.00K.m.		30°34'7.70"N	76°53'11.30"E	
A2	Gulabhgarh Road	428m	SE	30°33'54.27"N	76°53'21.07"E	
A3	Bharalli Village	4.95K.m.	SE	30°32'14.68"N	76°55'26.05"E	
A4	Derabassi Village	4.11K.m.	NW	30°35'10.69"N	76°50'45.56"E	
A5	Bhadurgarh Village	2.69K.m.	Ν	30°35'36.43"N	76°53'11.30"E	
A6	Kheri Gujran Village	1.84K.m.	SW	30°33'16.80"N	76°52'31.11"E	
A7	Mantatwala Village	7.42K.m.	NE	30°37'4.12"N	76°56'23.14"E	
A8	Toghanpur Village	7.80K.m.	SW	30°31'22.13"N	76°49'24.57"E	

TABLE 1.7: AMBIENT AIR QUALITY MONITORING STATIONS

Note:- Air Sampler was placed at height 3-4 m .

BASELINE CO CONCENTRATION V/S NAAQ STANDARDS

B. WATER ENVIRONMENT

✓ Ground water quality

Total 8 ground water sample were collected from 10K.m. radius of project site for check the quality of ground .Location table is given below:

Station		From the p	olant area	Coord	Coordinate	
Code	Locations	Distance in KM	Direction	Latitude	Longitude	
Ground Water						
W ₁	Project site	45M	Е	30°34'9.16"N	76°53'13.88"E	
GW1	Gulabhgarh Road	2.99	WNW	30°34'47.07"N	76°51'18.44"E	
GW ₂	Batawar Village	6.60	ESE	30°32'48.56"N	76°57'3.47"E	
GW ₃	Derabassi Village	4.16	NW	30°35'10.89"N	76°50'45.26"E	
GW ₄	Samgauri Village	3.60	SSE	30°32'12.66"N	76°53'48.02"E	
GW ₅	Bahadurgarh Village	2.58	NNE	30°35'28.89"N	76°53'44.49"E	
GW ₆	Mukandpur Village	4.11	SW	30°32'31.19"N	76°51'14.00"E	
GW ₇	Kheri Gujran	1.75	SSW	30°33'16.42"N	76°52'32.79"E	
GW ₈	Mantatwala village	7.30	NE	30°37'9.83"N	76°56'10.95"E	
		Surface	Water			
SW1	Dhangri River Upstream (Sultanpur)	6.15	Е	30°34'17.02"N	76°57'2.80"E	
SW ₂	Dhangri River Downstream (Batawar)	8.24	ESE	30°32'9.95"N	76°57'50.86"E	
SW ₃	Ghaggar River Upstream (Sanauli)	7.88	NNW	30°38'20.93"N	76°52'23.33"E	
SW ₄	Ghaggar River Downstream (Bhankharpur)	7.01	SW	30°36'46.31"N	76°49'52.40"E	

TABLE 1.8 GROUND WATER MONITORING LOCATIONS

OBSERVATION ON GROUND WATER QUALITY

- The pH value of ground water is an important index of acidity or alkalinity. pH value of the sample varies from 7.15 to 7.90 in all locations, which is well within the specified standards.
- Electric Conductivity vary from 550.6 μs/cm to 1196 μs/cm. Highest Electric Conductivity was found at GW1(Gulabhgarh road)and minimum at GW8(Mantatwala village).
- Total dissolved solids ranges from 368 to 754 mg/l. Minimum value was found at (GW8) at Mantatwala village and maximum at (GW1) Gulab garh road. All the results were found well within permissible limit of IS 10500: 2012.
- The hardness values in ground water of the study area ranges between 136 to 400 mg/l. Maximum value was found at (GW2) Batawar Village and minimum at (GW6) Mukandpur Village. All the results were found below the acceptable limits of IS 10500: 2012.
- The chloride values in ground water of the study area ranges between 32 to 196 mg/l. Chloride values at all locations were found below the acceptable limit as per Indian Standard IS: 10500-2012.
- > The fluoride content was found well within permissible limits at all location of study area.

INTERPRETATION: The analysis results of ground water samples of study area indicate that the quality of ground water is satisfactory and the obtained results are meeting the permissible limit of Indian Standard IS: 10500-2012. It is interpreted that water samples collected from the villages should not be directly used in drinking purpose but can be used in other domestic purposes like washing, bathing and irrigation.

OBSERVATION OF SURFACE WATER QUALITY

The maximum pH value of 7.70 observed in Dhangri river upstream water sample and minimum pH value observed in Ghaggar river upstream water sample. The maximum electrical conductivity value $892.4 \ \mu s/cm$ observed in Dhangri river upstream water sample and minimum electrical

conductivity value 568.8 µs/cm observed in Dhangri river downstream water sample. No major difference observed in DO level of Dhangri river and Ghaggar river water sample. The maximum DO value 6.4 mg/l in Ghaggar river and 6.3 mg/l in Dhangri river was observed.

C. NOISE ENVIRONMENT

Eight locations were selected within 10 k.m. radius of project site for monitoring Noise level locations are tabulated below:-

	Name of the location	Noise Location	Day			Night		
Station Code Name			L _{Max}	L _{Min}	Leq	L _{Max}	L _{Min}	Leq
		S1 Industrial Area			75			70
		S2 Residential Area			55			45
N1	Project Site	Industrial Area	66.7	42.0	54.8	42.7	34.8	38.7
N2	Gulabhgarh Road	Residential Area	62.2	42.5	52.3	38.2	35.0	36.7
N3	Bharalli Village	Residential Area	59.7	40.4	49.7	37.2	34.5	35.7
N4	Derabassi Village	Residential Area	62.3	42.6	51.9	38.7	35.9	37.0
N5	Bhadurgarh Village	Residential Area	62.8	43.1	51.1	39.4	36.6	37.8
N6	Kheri Gujran Village	Residential Area	63.3	40.8	50.6	40.4	36.9	38.7
N7	Mantatwala Village	Residential Area	55.7	35.3	49.6	43.2	33.2	36.8
N8	Toghanpur Village	Residential Area	63.7	38.0	52.0	40.7	37.2	39.0

Ambient Noise Levels in The Study Area [dB(A)] TABLE 1.9: AMBIENT NOISE QUALITY

The physical description of sound concerns its loudness as a function of frequency. Noise in general is sound, which is composed of many frequency components of various types of loudness distributed over the audible frequency range.

D. SOIL ENVIRONMENT

The soil samples were collected from core zone and buffer zone of project site, were analyzed in Environment and Chemical laboratory of M/s Chandigarh Pollution Testing Laboratory (CPTL) accredited by NABL and recognized by MOEF&CC

S. No	Locations	From Project Site			
		Distance	Direction	Latitude	Longitude
S ₁	Project Site	0.00K.m.		30°34'7.73"N	76°53'11.07"E
S ₂	Bera Village	2.12 K.m.	ESE	30°33'39.50"N	76°54'24.68"E
S ₃	Batawar Village	6.51 K.m.	ESE	30°32'50.44"N	76°56'59.49"E
S ₄	Samgauri Village	3.65 K.m.	SSE	30°32'10.81"N	76°53'47.75"E
S 5	Mukandpur Village	4.12 K.m.	SW	30°32'30.93"N	76°51'14.59"E
S ₆	Haibatpur Village	4.06 K.m.	NNW	30°36'7.47"N	76°51'55.71"E
S ₇	Sultanpur Village	5.06 K.m.	ENE	30°34'35.68"N	76°56'18.80"E
S ₈	Janetpur Village	6.14 K.m.	W	30°33'22.05"N	76°49'16.08"E

TABLE 1.10 SOIL MONITORING LOCATION

The average analysis of soil sample reveals that most of the soil of S.A.S. Nagar (Mohali) district has developed in situ.

- The average analysis of soil sample reveals that most of the soil of S.A.S. Nagar (Mohali) district has developed in situ.
- The bulk density of the soils was found in the range of 1.39 gm/cm3 at Batawar Village (S3) to 1.52 gm/cm³ at Mukandpur village (S5).
- Water Holding Capacity of study area soils was observed as 34.26 % at Batawar village (S3) to 38.62 % at Haibatpur village (S6).
- The soil pH ranges from 7.76 Sultanpur village (S7) to 7.96 project site (S1).
- The Organic matter content of soil varied 0.33 Bera village (S2) to 0.45 % at Janetpur village(S8).
- Available nitrogen content in the surface soils ranges between 97.65 kg/ha at Haibatpur village(S6) to Bera village(S2) 119.70 kg/ha.
- Total phosphorus content ranges between 28.35 Kg/ha Janetpur village(S8) to 32.01kg/ha at Batwar village(S4).
- Total potassium content in these soils ranges between 241.6 kg/ha at Sultanpur village (S7) to 302.3 at Batawar village Kg/ha(S3).
- The available zinc in surface soils of the study area ranges from 30.20 % at Mukandpur village (S5)% and 38.40 % at Bera village (S2) village. As per the critical limit of available zinc (0.5-mg/kg), most of the study area soils are more than sufficient in available zinc in the vicinity of the project.
- EC of the soil sample was in the range of 182.2 μs Samguri (S4) to 321.20 μS project site S1).
- Chlorides were in the range of 0.0054 at Batawar village S3(Batawar) to 0.0064 % at Sultanpur village(S7).
- It was observed that levels of Cu, Cd, Fe, were found to be in the range of 15.8% Haibatpur village (S6) to 24.6 % Mukanduri Village (S5), Cd 0.8% (S1) to 1.1% (S4), Fe 1.78 % Haibatpur village(S6) to 2.24% Sultanpur village (S7). No toxic metals are observed in the soil-water extract.

1.6 ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES Air Environment

Main source of gaseous emission will be fugitive emissions and pollutant into air from the proposed project will be through flue gas stacks attached to boiler, DG set, through process vents and flue gas stack attached to incinerator.

Adequate stack height of DG set will be maintained and Multicyclone with dry scrubber will be installed at boiler to control emission pollutant under norms.

The table is given below for the sources of air pollution and its control.

Sr. No	Source of Emission	Type of Emission	Stack Height (meter)	Fuel Name & Quantity	Pollution Control Equipment	
1	Boiler	SPM SOx NOx	30	Rice Husk Briquettes 13.9 MT/day	Multi-Cyclone and Dry Scrubber is proposed.	
2	Process Vent	HCl, SO ₂ , Solvent Vapours Pesticide in the form of P.M.	15	-	 Caustic Scrubber VOC control system Activated carbon adsorption system 	
3	D.G. Set 125 KVA & &2x 500KVA):	SPM Sox NOx	15	HSD As and when required	Dust Collector, Silencer	
4	Stack attached to Incinerator	SPM SOx NOx	30	HSD As and when required	- Caustic Scrubber	

TABLE 1.11: SOURCES OF AIR POLLUTION AND ITS CONTROL

Water Environment

CONSTRUCTION PHASE: The total water requirement during construction phase will be 20 KLD out of which 15 KLD of water will be required for construction works and rest of 5 KLD water will be required for domestic purpose. Waste water generated from domestic usage will be treated in septic tank followed by soak pit.

OPERATION PHASE: Total Water requirement is 75.14KLD out of which 15.62KLD STP/ETP/MEE treated water will be recycled and hence only 59.52 KLD fresh water will be required which will be fulfilled from in-house bore well after permission from concerned authority i.e. Punjab water regulation and development authority (PWRDA).

Pa	articulars	Water Requirement KLD	Recycled Water KLD	Fresh Water Requirement KLD	
Industrial	Process	5.24	-	5.24	
	Cooling Tower	50.00	1.72	48.28	
	Boiler	6.40	6.40	0.00	
	Scrubber	2.00	2.00	0.00	
	R. Washing	1.00	1.00	0.00	
	Lab	1.00	-	1.00	
	Plantation	4.50	4.5	0.00	
Domestic		5.00	-	5.00	
TOTAL (KL/DAY)		75.14	15.62	59.52	
Domestic		4.50			
TOTAL (KL/DAY)		19.58			

TABLE 1.12: WATER REQUIREMENT

Executive Summary & Conclusion

WASTE WATER GENERATION

DOMESTIC SEWAGE: Total 4.50KLD domestic sewage will be generated in proposed project and after proper treatment at sewage treatment plant the effluent will be used for irrigation of green belt area.

INDUSTRIAL EFFLUENT: The total industrial wastewater generation from project will be 19.58 KLD. Sources of industrial effluent generation will be from manufacturing process, scrubber, reactor washing, and utilities. Industrial effluent will be segregated at source for high COD, high TDS and low COD, low TDS and treated accordingly.

The sources of wastewater generation and quantity per day in proposed project are given in **above figure** and Water Balance Diagram is shown **Figure No1.13**

Particulars		Wastewater Generation	Disposal Method
Process		7.00	ALL EFFLUENT INCLUDING MEE CONSENSATE
Industrial	Cooling Tower	1.00	WILL BE SENT TO RO - PROCESSING. RO -
	Boiler	0.50	COOLING TOWER REACTOR WASHING &
	Scrubber	1.90	SCRUBBER. RO - REJECT WILL BE SENT TO MEE
	R. Washing	1.00	AND ZLD WILL BE MAINTAINED IN PROPOSED
	RO – Reject	2.78	PROJECT
	LAB	0.90	
TOTAL INDUSTRIAL (KL/DAY)		15.08	DOMESTIC WASTEWATER WILL BE SENT TO
			STP FOR AEROBIC AND ANAEROBIC TREATMENT AND REUSED IN PLANTATION.

Table No. 1.13: Details of wastewater generation

1.7 ETP PROCESS DESCRIPTIONS AND FLOW DIAGRAM

Wastewater generated from the proposed pesticide manufacturing plant will be segregated into separate streams depending on their pollution levels as given in wastewater treatment methodology.

Hazardous Waste Management

Entire quantity of hazardous waste will be handled and disposed as per Hazardous Waste (Management, Handling and Trans boundary movement) Rules'2016, amended time to time. Different categories sloid and liquid hazardous waste will be generated. SHE department shall insure to follow CPCB guideline during the collection, storage, handling, transportation and disposal of each category hazardous waste.

TABLE: 1.14 HAZARDOUS & SOLID WASTE	GENERATION QUANTITY AND MODE OF
DISPOSAL	

S. No.	HW/Solid Waste	Category	Proposed	Disposal Method			
	Hazardous Waste MTPA						
1	Process Residue	28.1	104.23	TSDF/Cement			
2	ETP Sludge	35.3	60.00	TSDF			
3	MEE Sludge	35.3	293.40	TSDF			
4	Empty	33.1	100	Sale to Authorized			
5	Used/spent oil	5.1	50 Ltr/Month	Sale to Authorized			
B. Solid Waste MTPA							
7	Fly Ash (Boiler)		802	Sale to brick			
8	Incinerator Ash	37.2	5.00	TSDF			

Noise Control Measures

The main sources of noise pollution will be from operation of boiler, D.G. set, process plant, APCM and other machineries etc. However, the noise transmitted outside the plant boundary will be low because most of the noise generating equipment's will be in closed structures provided with acoustic enclosure. Greenbelt will be developed around the periphery of the plant. Ear muff, ear plug will be provided to all workers working at noisy area.

Green Belt Development

The main objective of the green belt is to provide a barrier between the plant and surroundings areas. Total 24159.73 sq. m land area is available at site; out of this area about 7976 Sq.m (33.00%) area will be covered as greenbelt and other forms of greenery.

. Capital cost will be Rs.5.0 lakhs and recurring cost Rs. 2.0 Lakhs /Year.

The budget includes cost of digging of pits, fertilizers, saplings and maintenance for 3 years.

1.8 ENVIRONMENT MONITORING PROGRAMME

The details of monitoring are given below table:

TABLE 1.15 ENVIRONMENT MONITORING PROGRAMME

Nature of Analysis	Frequency of analysis	Parameters				
Wastewater	Monthly by external agency	pH, COD, BOD,TDS, SS, Oil & Grease, etc.				
Stack Monitoring of each	Monthly by external agency	PM, SO2, NOX,				
stack						
Ambient Air	Monthly for 24 hours or as	PM10, PM2.5, SO2, NO _x , HCL, CO				
	per the statutory					
	conditions by external					
	agency					
Noise level	Monthly as per the	Near Main gate, Near. boiler,				
	statutory conditions by	Process area, Near ETP,				
	external agency	Near D.G. etc.				
Work area monitoring	Monthly by external agency	RPM, VOC, Acid Fumes				
Health check-up of	As per the statutory guideline.					
workers						

1.9 QUALITATIVE RISK ANALYSIS

Risk analysis and study have been carried out for identification of hazards, selection of credible scenarios, Risk Mitigation measures etc. All the hazardous chemicals will be stored and handled as per MSDS guidelines.

1.10 PROJECT BENEFITS

The proposed project will become beneficial to the surrounding area or community in terms of infrastructural development, Social development, employment and other tangible benefits. The proposed project has a potential for employment of skilled, semi-skilled and unskilled manpower during construction phase as well as operational phase.

1.11 ENVIRONMENTAL MANAGEMENT PLAN

Overall objective of EMP

Prevention: Measures aimed at impeding the occurrence of negative environmental impacts and/or preventing such an occurrence having harmful environmental impacts.

Preservation: Preventing any future actions that might adversely affect an environmental resource or attribute.

Minimization: Limiting or reducing the degree, extent, magnitude, or duration of adverse impacts.

1.12 CONCLUSION

Based on the study it is concluded that,

- Domestic Sewage: Total 4.50KLD domestic sewage will be generated in proposed project and after proper treatment at sewage treatment plant the effluent will be used for irrigation of green belt area.
- Industrial effluent: The total industrial wastewater generation from project will be 19.58 KLD. Sources of industrial effluent generation will be from manufacturing process, scrubber, reactor washing, and utilities. Industrial effluent will be segregated at source for high COD, high TDS and low COD, low TDS and treated accordingly.
- Construction Phase: The total water requirement during construction phase will be 20 KLD out of which 15 KLD of water will be required for construction works and rest of 5 KLD water will be required for domestic purpose. Waste water generated from domestic usage will be treated in septic tank followed by soak pit.
- Operation Phase: Total Water requirement is 75.14KLD out of which 15.62KLD STP/ETP/MEE treated water will be recycled and hence only 59.52 KLD fresh water will be required which will be fulfilled from in-house bore well after permission from concerned authority i.e. Punjab water regulation and development authority (PWRDA). Multi-Cyclone with dry scrubber will be installed at boiler. Hence pollutants will be well within the prescribed norms.
- Solvent recovery system shall be related to VOC control system and finally to activated carbon adsorption system will be provided to avoid release any solvent vapours/fumes in the atmosphere. In any emergency, carbon adsorption system will be disconnected, and vapours diverted to incinerator.
- To prevent Fugitive emission, various steps will be taken like regular sprinkling of water and paved road.
- > Adequate arrangement for handling and disposal of Hazardous solid waste will be made.
- > Fire protection and safety measures will be provided to take care of fire and explosion hazard.
- Suggestions of qualitative risk analysis study will be followed to minimize accidents and for safe operations.
- Recommendations suggested in Environmental Management Plan will be followed to minimize the impact of proposed project.

Overall, direct and indirect employment opportunities, improvement in basic infrastructures by development of industry etc. will be observed with negligible impact on environment. It can be concluded that on positive implementation of mitigation measures and environmental management plan during the construction and operational phase, there will be negligible impact on the environment.
